Abstract
For any bounded (real) initial data it is known that there is a unique global solution to the two-dimensional Navier–Stokes equations. This paper is concerned with a bound for the sum of the modulus of amplitudes when initial velocity is spatially almost periodic in 2D. In the case of general dimension, it is bounded on local time of existence shown by Giga et al. (Methods Appl Anal 12:381–393,2005). A class of initial data is given such that the sum of the modulus of amplitudes of a solution is bounded on any finite time interval. It is shown by an explicit example that such a bound may diverge to infinity as the time goes to infinity at least for complex initial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.