Abstract
Let k be an integer greater than one, and let G be a simple graph with at least 4 k+1 vertices. In this article, we prove that if σ 2( G)⩾| V( G)|, then for an edge e of G, there exists a 2-factor with k cycles that contains e, or | V( G)| is even and G has a vertex cover of size | V( G)|/2 containing the endpoints of e. Here σ 2( G) is the minimum degree sum for a pair of non-adjacent vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.