Abstract

Abstract A solution is presented for the static problem of thermoelectroelasticity involving a transversely isotropic space with a heat-insulated rigid sheet-like inclusion (anticrack) located in the isotropy plane. It is assumed that far from this defect the body is in a uniform heat flow perpendicular to the inclusion plane. Besides, considered is the case where the electric potential on the anticrack faces is equal to zero. Accurate results are obtained by constructing suitable potential solutions and reducing the thermoelectromechanical problem to its thermomechanical counterpart. The governing boundary integral equation for a planar anticrack of arbitrary shape is obtained in terms of a normal stress discontinuity. As an illustration, a closed-form solution is given and discussed for a circular rigid inclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.