Abstract

In this paper, we study the existence, construction and number of (2-d)-kernels in the tensor product of paths, cycles and complete graphs. The symmetric distribution of (2-d)-kernels in these products helps us to characterize them. Among others, we show that the existence of (2-d)-kernels in the tensor product does not require the existence of a (2-d)-kernel in their factors. Moreover, we determine the number of (2-d)-kernels in the tensor product of certain factors using Padovan and Perrin numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.