Abstract

AbstractIn Baire space we define a sequence of equivalence relations ‹Ev ∣ v < , each Ev being with classes in + v + 1 and such that (i) Ev does not have perfectly many classes, and (ii) is countable iff < ω1. This construction can be extended cofinally in . A new proof is given of a theorem of Hausdorff on partitions of R into ω1 many sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.