Abstract

The constructible universe L of Gödel [2] has a natural well-ordering <L given by the order of construction; a closer look reveals that this well-ordering is definable by a Σ1 formula. Cohen's method of forcing provides several examples of models of ZF + V ≠ L which have a definable well-ordering but none is definable by a relatively simple formula.Recently, Mansfield [7] has shown that if a set of reals (or hereditarily countable sets) has a Σ1, well-ordering then each of its elements is constructible. A question has thus arisen whether one can find a model of ZF + V ≠ L that has a Σ1 well-ordering of the universe. We answer this question in the affirmative.The main result of this paper isTheorem. There is a model of ZF + V ≠ L which has a Σ1 well-ordering.The model is a generic extension of L by adjoining a branch through a Suslin tree with certain properties. The branch is a nonconstructible subset of ℵ1. Note that by Mansfield's theorem, the model must not have nonconstructible subsets of ω.Our results can be generalized in several directions. We note that in particular, we can get a model with a Σ1 well-ordering that is not L[X] for any set X. As one might expect from a joint paper by a recursion theorist and a set theorist, the proof consists of a construction and a computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.