Abstract
In this study, the algebraic structure of 1-absorbing ideals is first examined and applied to fuzzy sets, along with an investigation into the relationships and algebraic properties between them. The contribution to this work's literature involves examining 1-absorbing fuzzy primary ideals. Features of 1-absorbing fuzzy primary ideals are explored, and it is demonstrated, for instance, that I is deemed a 1-absorbing fuzzy primary ideal of P if I is a fuzzy primary ideal of P. Additionally, I is considered a 2-absorbing fuzzy primary ideal of P if I is a 1-absorbing fuzzy primary ideal of P. Furthermore, these theorems are elucidated through specific examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Engineering Technology and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.