Abstract

Abstract. Let q be an algebraic integer of degree d ≥ 2. Consider the rank of the multiplicative subgroup of ℂ* generated by the conjugates of q. We say q is of full rank if either the rank is d − 1 and q has norm ±1, or the rank is d. In this paper we study some properties of ℤ[q] where q is an algebraic integer of full rank. The special cases of when q is a Pisot number and when q is a Pisot-cyclotomic number are also studied. There are four main results.(1)If q is an algebraic integer of full rank and n is a fixed positive integer, then there are only finitely many m such that disc `ℤ[qm]´ = disc `ℤ[qn]´.(2)If q and r are algebraic integers of degree d of full rank and ℤ[qn] = ℤ[rn] for infinitely many n, then either q = ωr′ or q = Norm(r)2/dω/r′ , where r ′ is some conjugate of r and ω is some root of unity.(3)Let r be an algebraic integer of degree at most 3. Then there are at most 40 Pisot numbers q such that ℤ[q] = ℤ[r].(4)There are only finitely many Pisot-cyclotomic numbers of any fixed order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call