Abstract

Phosphorene, also known as single- or few-layer black phosphorus (FLBP), is a new member of the two-dimensional (2D) material family and has attracted significant attention in recent years for applications in optoelectronics, energy storage and biomedicine due to its unique physicochemical properties and excellent biocompatibility. FLBP is regarded as a potential biological imaging agent for cancer diagnosis due to its intrinsic fluorescence (FL) and photoacoustic (PA) properties and negligible cytotoxicity. FLBP-based photothermal and photodynamic therapies have emerged with excellent anti-tumour therapeutic efficacies due to their unique physical properties, such as near-infrared (NIR) optical absorbance, large extinction coefficients, biodegradability and reactive oxygen species (ROS) or heat generation upon light irradiation. Furthermore, FLBP is a promising drug delivery platform because of its high drug-loading capacity due to its puckered layer structure with an ultralarge surface area, and FLBP is size-controllable with facile surface chemical modification. Because of the marked advantages of FLBP nanomaterials in biomedical applications, an overview of the latest progress and paradigms of FLBP-based nanoplatforms for multidisciplinary biomedical applications is presented in this tutorial review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.