Abstract

Membrane wetting caused by low surface tension pollutants in feed solution has been a major challenge for membrane distillation (MD), and omniphobic membranes have been proposed as a promising solution to address this challenge due to their strong repellence towards liquids with a broad range of surface tensions. In this study, we report a nanoparticle-free strategy to fabricate omniphobic polyvinylidene fluoride (PVDF) nanofibrous membranes for robust MD desalination. A solvent-thermal induced roughening method was used to create multiscale hierarchical nanofin structures on electrospun PVDF nanofibers, followed by a polydopamine-anchored surface fluorination treatment to reduce the surface energy of the nanofibrous membrane. We show that the as-prepared membrane exhibited super repellence (>150°) to diverse liquids with surface tension ranging from 73 to 30 mN m−1. Moreover, the omniphobic membrane maintained stable salt rejection and water flux in direct contact MD processes in the presence of sodium dodecyl sulfate surfactant (up to 0.4 mM) or mineral oil (up to 480 mg L−1), demonstrating its promising potential in practical water reclamation from MD applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.