Abstract

In this paper, an omnidirectional photonic band gap (OBG) of one-dimensional (1D) ternary superconductor-dielectric photonic crystals (SDPCs) based on a new Thue–Mores aperiodic structure is theoretically studied by the transfer matrix method (TMM) in detail. Compared to zero- $\bar{n}$ gap or single negative (negative permittivity or negative permeability) gap, such OBG originates from Bragg gap. From the numerical results, the bandwidth and central frequency of OBG can be notably enlarged by manipulating the thicknesses of superconductor and dielectric layers but cease to change with increasing the Thue–Mores order. The OBG also can be tuned by the ambient temperature of the system especially close to the critical temperature. However, the damping coefficient of the superconductor layer has no effects on the OBG. The relative bandwidth of OBG also is investigated by the parameters as mentioned above. It is clear that such 1D ternary SDPCs have a superior feature in the enhancement of the bandwidth of OBG compared to the conventional ternary SDPCs and conventional ternary Thue–Mores aperiodic SDPCs. These results may provide theoretical instructions to design the future SDPCs devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call