Abstract

In this paper, a nonlinear controller design for an omni-directional mobile robot is presented. The robot controller consists of an outer-loop (kinematics) controller and an inner-loop (dynamics) controller, which are both designed using the Trajectory Linearization Control (TLC) method based on a nonlinear robot dynamic model. The TLC controller design combines a nonlinear dynamic inversion and a linear time-varying regulator in a novel way, thereby achieving robust stability and performance along the trajectory without interpolating controller gains. A sensor fusion method, which combines the onboard sensor and the vision system data, is employed to provide accurate and reliable robot position and orientation measurements, thereby reducing the wheel slippage induced tracking error. A time-varying command filter is employed to reshape an abrupt command trajectory for control saturation avoidance. The real-time hardware-in-the-loop (HIL) test results show that with a set of fixed controller design parameters, the TLC robot controller is able to follow a large class of 3-degrees-of-freedom (3DOF) trajectory commands accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call