Abstract
This work presents the generation of omnidirectional Lamb waves by a new magnetostrictive patch transducer (MPT) and investigates its generation mechanism. Although MPTs have been widely used for wave transduction in plates and pipes, no investigation reports the generation of omnidirectional Lamb waves in a plate by an MPT. For the generation, we propose an axisymmetrically-configured MPT that installs multiple axisymmetric turns of coil outside of a permanent cylindrical magnet located above the center of a circular magnetostrictive patch. After confirming the omnidirectivity of the proposed MPT experimentally, the mechanism of the Lamb wave generation and its frequency characteristics are investigated. It is also shown that the Lamb wave is most efficiently generated in a test plate when its wavelength is equal to two-thirds of the magnetostrictive patch diameter. If this wavelength¿patch diameter relation holds, the second radial extensional vibration mode of the patch of the proposed MPT is shown to be the mode responsible for generating the Lamb wave in a plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.