Abstract

Omnidirectional image (OI) quality assessment is crucial to facilitate the development of virtual reality (VR) related technology. In this work, a distortion discrimination assisted multi-stream network is proposed for OI quality assessment. The multi-stream architecture is constructed by generating the viewport images received by the retina at one point to simulate the characteristics of humans perceiving VR contents. Additionally, the strategy of generating several viewport image sets from one OI is proposed for data augmentation. Furthermore, the facts that the human brain has the ability for both quality assessment and distortion type distinguishment, and the process of human brain handling two tasks exists information interaction inspire us to employ an auxiliary distortion discrimination task to facilitate the quality assessment task learning. Extensive experiments conducted on two public OI databases demonstrate the superiority of the proposed method to both traditional 2D quality metrics and existing metrics specific for OIs. Moreover, utilizing the assistant task is proven to be more effective than the single task learning for OI quality evaluation. Better generalization performance is also verified to be another valuable trait of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.