Abstract
Bulk materials with a relative electric permittivity ε close to zero exhibit giant Kerr nonlinearities. However, harnessing this response in guided-wave geometries is not straightforward, due to the extreme and counterintuitive properties of such epsilon-near-zero materials. Here we investigate, through rigorous calculations of the nonlinear coefficient, how the remarkable nonlinear properties of such materials can be exploited in several structures, including bulk films, plasmonic nanowires, and metal nanoapertures. We find the largest nonlinear response when the modal area and group velocity are simultaneously minimized, leading to omnidirectional field enhancement. This insight will be key for understanding nonlinear nanophotonic systems with extreme nonlinearities and points to new design paradigms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.