Abstract
In this work we calculate the emittance spectra of the electromagnetic radiation normally and obliquely incident (s- and p-polarized modes) on a one-dimensional multilayer quasiperiodic photonic structure made up by layered system of positive (SiO2) and negative (LiTaO3) refractive index materials organized in a quasiperiodic (Fibonacci-like) fashion. We model the negative refractive index material by an effective medium, whose electric permittivity ϵ(ω) is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability μ(ω) we have a Drude-like frequency-dependent function. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff’s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps appear in the THz regime, in well defined frequency intervals independently of the electromagnetic radiation’s polarized modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.