Abstract

Decentralized state estimation is one of the most fundamental components of autonomous aerial swarm systems in GPS-denied areas yet it still remains a highly challenging research topic. Omni-swarm, a decentralized omnidirectional visual-inertial-UWB state estimation system for aerial swarms, is proposed in this paper to address this research niche. To solve the issues of observability, complicated initialization, insufficient accuracy, and lack of global consistency, we introduce an omnidirectional perception front-end in Omni-swarm. It consists of stereo wide-FoV cameras and ultra-wideband sensors, visual-inertial odometry, multi-drone map-based localization, and visual drone tracking algorithms. The measurements from the front-end are fused with graph-based optimization in the back-end. The proposed method achieves centimeter-level relative state estimation accuracy while guaranteeing global consistency in the aerial swarm, as evidenced by the experimental results. Moreover, supported by Omni-swarm, inter-drone collision avoidance can be accomplished without any external devices, demonstrating the potential of Omni-swarm as the foundation of autonomous aerial swarms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call