Abstract
This paper is about omitting types in logic of metric structures introduced by Ben Yaacov, Berenstein, Henson and Usvyatsov. While a complete type is omissible in some model of a countable complete theory if and only if it is not principal, this is not true for the incomplete types by a result of Ben Yaacov. We prove that there is no simple test for determining whether a type is omissible in a model of a theory [Formula: see text] in a countable language. More precisely, we find a theory in a countable language such that the set of types omissible in some of its models is a complete [Formula: see text] set and a complete theory in a countable language such that the set of types omissible in some of its models is a complete [Formula: see text] set. Two more unexpected examples are given: (i) a complete theory [Formula: see text] and a countable set of types such that each of its finite sets is jointly omissible in a model of [Formula: see text], but the whole set is not and (ii) a complete theory and two types that are separately omissible, but not jointly omissible, in its models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.