Abstract

Mass spectrometry is a powerful and widely used tool for generating proteomics, lipidomics and metabolomics profiles, which is pivotal for elucidating biological processes and identifying biomarkers. However, missing values in mass spectrometry-based omics data may pose a critical challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to evaluate the performance of 28 diverse imputation methods. omicsMIC offers a nuanced perspective, acknowledging the inherent heterogeneity in biological data and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versatility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. omicsMIC is freely available at https://github.com/WQLin8/omicsMIC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.