Abstract

Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.