Abstract

BackgroundAscomycete Cordyceps species have been using as valued traditional Chinese medicines. Particularly, the fruiting bodies of Cordyceps cicadae (syn. Isaria cicadae) have long been utilized for the treatment of chronic kidney disease. However, the genetics and bioactive chemicals in this fungus have been largely unexplored.ResultsIn this study, we performed comprehensive omics analyses of C. cicadae, and found that, in contrast to other Cordyceps fungi, C. cicadae produces asexual fruiting bodies with the production of conidial spores instead of the meiotic ascospores. Genome sequencing and comparative genomic analysis indicate that the protein families encoded by C. cicadae are typical of entomopathogenic fungi, including the expansion of proteases and chitinases for targeting insect hosts. Interestingly, we found that the MAT1-2 mating-type locus of the sequenced strain contains an abnormally truncated MAT1-1-1 gene. Gene deletions revealed that asexual fruiting of C. cicadae is independent of the MAT locus control. RNA-seq transcriptome data also indicate that, compared to growth in a liquid culture, the putative genes involved in mating and meiosis processes were not up-regulated during fungal fruiting, further supporting asexual reproduction in this fungus. The genome of C. cicadae encodes an array of conservative and divergent gene clusters for secondary metabolisms. Based on our analysis, the production of known carcinogenic metabolites by this fungus could be potentially precluded. However, the confirmed production of oosporein raises health concerns about the frequent consumption of fungal fruiting bodies.ConclusionsThe results of this study expand our knowledge of fungal genetics that asexual fruiting can occur independent of the MAT locus control. The obtained genomic and metabolomic data will benefit future investigations of this fungus for medicinal uses.

Highlights

  • Ascomycete Cordyceps species have been using as valued traditional Chinese medicines

  • The fruiting bodies produced by C. militaris, O. sinensis, and C. cicadae have long been used as valued traditional Chinese medicines (TCMs) for anticancer, immunomodulation, anti-fatigue, and antiimpotence [8, 9]

  • Conservation and divergence of the gene clusters involved in secondary metabolisms With the obtained genome information of C. cicadae, we identified the gene clusters putatively involved in secondary metabolisms, including the 34 core enzymes of non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS), Nonribosomal peptide synthetase (NRPS)-Polyketide synthase (PKS) hybrid, and terpene synthase

Read more

Summary

Introduction

Ascomycete Cordyceps species have been using as valued traditional Chinese medicines. Ascomycete fungi belonging to Cordyceps sensu lato account to more than 500 known species that are classified into the three families, Cordycipitaceae, Ophiocordycipitaceae, and Clavicipitaceae [1, 2]. The family Cordycipitaceae includes the genera Cordyceps, Isaria, Beauveria, and Lecanicillium. In the family Ophiocordycipitaceae, some species such as Ophiocordyceps sinensis (better known as the caterpillar fungus C. sinensis) and O. unilateralis are highly host-specific and the infections by these fungi can alter insect host behaviors [4, 5]. The fruiting bodies produced by C. militaris, O. sinensis, and C. cicadae have long been used as valued traditional Chinese medicines (TCMs) for anticancer, immunomodulation, anti-fatigue, and antiimpotence [8, 9]. In contrast to C. militaris and O. sinensis with clear sexual lifecycles [11], the sexuality of C. cicadae is still enigmatic

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.