Abstract

Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call