Abstract
To elucidate the effect and underlying mechanisms of omeprazole action on Mg(2+) transport across the intestinal epithelium. Caco-2 monolayers were cultured in various dose omeprazole-containing media for 14 or 21 d before being inserted into a modified Ussing chamber apparatus to investigate the bi-directional Mg(2+) transport and electrical parameters. Paracellular permeability of the monolayer was also observed by the dilution potential technique and a cation permeability study. An Arrhenius plot was performed to elucidate the activation energy of passive Mg(2+) transport across the Caco-2 monolayers. Both apical to basolateral and basolateral to apical passive Mg(2+) fluxes of omeprazole-treated epithelium were decreased in a dose- and time-dependent manner. Omeprazole also decreased the paracellular cation selectivity and changed the paracellular selective permeability profile of Caco-2 epithelium to Li(+), Na(+), K(+), Rb(+), and Cs(+) from series VII to series VI of the Eisenman sequence. The Arrhenius plot revealed the higher activation energy for passive Mg(2+) transport in omeprazole-treated epithelium than that of control epithelium, indicating that omeprazole affected the paracellular channel of Caco-2 epithelium in such a way that Mg(2+) movement was impeded. Omeprazole decreased paracellular cation permeability and increased the activation energy for passive Mg(2+) transport of Caco-2 monolayers that led to the suppression of passive Mg(2+) absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.