Abstract

BackgroundMesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair. However, limitations exist such as the low numbers of MSCs obtained from donors, and the poor survival and function of donor cells. Omentin-1, a new fat depot-specific secretory adipokine, exerts proproliferation, prosurvival, and proangiogenic functions in certain cells via an Akt-dependent mechanism; however, little is known about the influence of omentin-1 on MSCs.MethodsMSCs were isolated from 60–80 g donor rats. Cell proliferation was assessed with CCK-8 and EdU assay. Cell cycle, apoptosis ratio, reactive oxygen species concentration, and mitochondrial membrane potential were detected by flow cytometry. Hoechst 33342 dye was used to assess morphological changes of apoptosis. Expression levels of Akt, FoxO3a, GSK-3β, and apoptosis- and cell cycle-associated proteins were detected by Western blotting. Tube formation assay was used to test the angiogenesis role of conditioned medium from MSCs in vitro. The cytokine secretion was assessed by ELISA.ResultsAfter treatment with omentin-1 (100–800 ng/ml), MSCs displayed a higher proliferative capacity with an increasing number of cells in the S and G2 phase of the cell cycle. Moreover, omentin-1 preconditioning for 1 h could protect MSCs against H2O2-induced apoptosis in a concentration-dependent manner. Furthermore, omentin-1 pretreatment reduced the excessive reactive oxygen species. Western blots revealed that increased Bcl-2 and decreased Bax appeared in MSCs after omentin-1 incubation, which inhibited the mitochondrial apoptosis pathways with evidence showing inhibition of caspase-3 cleavage and preservation of mitochondrial membrane potential. Omentin-1 could enhance angiogenic growth factor secretion and elevate the ability of MSCs to stimulate tube formation by human umbilical vein endothelial cells (HUVECs). Furthermore, omentin-1 enhanced Akt phosphorylation; however, blockade of the PI3K/Akt pathway with an inhibitor, LY294002 (20 μM), suppressed the above beneficial effects of omentin-1.ConclusionOmentin-1 can exert beneficial effects on MSCs by promoting proliferation, inhibiting apoptosis, increasing secretion of angiogenic cytokines, and enhancing the ability for stimulating tube formation by HUVECs via the PI3K/Akt signaling pathway. Thus, omentin-1 may be considered a candidate for optimizing MSC-based cell therapy.

Highlights

  • Mesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair

  • Omentin-1 activated PI3K/Akt signaling pathway in MSCs Previous studies have shown that omentin-1 could activate the PI3K/Akt signaling pathway in various cells, such as macrophages [26], osteoblasts [27], vascular smooth muscle cells [28], endothelial cells [29], and cardiomyocytes [23]; this pathway plays an important role in MSCs

  • To further confirm whether the PI3K/Akt signaling pathway is essential to the proliferation effect of omentin-1 on MSCs, cells were preincubated with LY294002 (20 μm/L) for 1 h prior to omentin-1 treatment; we found that the PI3K/Akt inhibitor LY294002 dramatically suppressed this effect of omentin-1 on MSC proliferation (Fig. 2)

Read more

Summary

Introduction

Mesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair Limitations exist such as the low numbers of MSCs obtained from donors, and the poor survival and function of donor cells. PI3K/Akt-related signaling pathways are known to function as core mechanisms by regulating multiple cellular behaviors of MSCs such as proliferation [7, 8], survival [9, 10], proangiogenesis [11], cytokine production [12], and so on. To our knowledge, there has been no visual evidence of the protective effects of omentin-1 on the biological functions of MSCs. we designed the present study to explore the potential role of omentin-1 on the proliferation, survival, angiogenesis, and cytokine production of MSCs and to elucidate whether the modulatory role of omentin-1 in MSCs was due to the activation of the PI3K/Akt signaling pathway

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call