Abstract

Polycystic ovary syndrome (PCOS) is associated with insulin resistance and obesity. Recent studies have shown that plasma omentin-1 levels decrease with obesity. Currently, no data exist on the relative expression and regulation of omentin-1 in adipose tissue of women with PCOS. The objective of this study was to assess mRNA and protein levels of omentin-1, including circulating omentin-1, in omental adipose tissue of women with PCOS and matched control subjects. Ex vivo and in vivo regulation of adipose tissue omentin-1 was also studied. Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of omentin-1. Plasma omentin-1 was measured by enzyme-linked immunosorbent assay. The effects of d-glucose, insulin, and gonadal and adrenal steroids on adipose tissue omentin-1 were analyzed ex vivo. The in vivo effects of insulin (hyperinsulinemia) on omentin-1 levels were also assessed by a prolonged insulin-glucose infusion. In addition to decreased plasma omentin-1 levels in women with PCOS (P < 0.05), compared with control subjects, there was significantly lower levels of omentin-1 mRNA (P < 0.01) and protein (P < 0.05) in omental adipose tissue of women with PCOS (P < 0.01). Furthermore, in omental adipose tissue explants, insulin and glucose significantly dose-dependently decreased omentin-1 mRNA expression, protein levels, and secretion into conditioned media (P < 0.05, P < 0.01). Also, hyperinsulinemic induction in healthy subjects significantly reduced plasma omentin-1 levels (P < 0.01). Our novel findings reveal that omentin-1 is downregulated by insulin and glucose. These may, in part, explain the decreased omentin-1 levels observed in our overweight women with PCOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.