Abstract

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) attenuate inflammatory responses in the central nervous system, leading to neuroprotective effects. Inhibition of histone deacetylase 3 (HDAC3) has neuroprotective effects after spinal cord injury (SCI) through the SIRT1 pathway, but the pathophysiological mechanisms of SCI are complex and the interactions between ω-3 PUFAs and organelles remain largely unknown. This study aimed to investigate the effect of ω-3 PUFAs on endoplasmic reticulum (ER) stress-induced neuroinflammation through the HDAC3/peroxisome proliferator-activated receptor-γ coactivator (PGC)-1ɑ pathway after SCI. To this end, a contusion-induced SCI rat model was established to evaluate the effects of ω-3 PUFAs on ER stress-mediated inflammation in SCI. ER stress was rapidly induced in spinal cord lesions after SCI and was significantly reduced after ω-3 PUFA treatment. Consistent with reduced ER stress, HDAC3 expression levels and inflammatory responses were decreased, and PGC-1ɑ expression levels were increased after SCI. We found that ω-3 PUFA treatment attenuated ER stress through HDAC3 inhibition, thereby reducing SCI-induced inflammation. Taken together, these results suggest a role for ω-3 PUFA in protecting against SCI-induced neuroinflammation and promoting neurological functional recovery by regulating the histone deacetylase 3/ peroxisome proliferator-activated receptor-γ coactivatorpathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.