Abstract

Two experiments evaluated the ability of maternal fatty acid supplementation to alter conceptus and endometrial fatty acid composition. In Exp. 1, treatments were 1) the control, a corn-soybean meal diet; 2) flax, the control diet plus ground flax (3.75% of diet); and 3) protected fatty acids (PFA), the control plus a protected fish oil source rich in n-3 PUFA (Gromega, JBS United Inc., Sheridan, IN; 1.5% of diet). Supplements replaced equal parts of corn and soybean meal. When gilts reached 170 d of age, PG600 (PMSG and hCG, Intervet USA, Millsboro, DE) was injected to induce puberty, and dietary treatments (n = 8/treatment) were initiated. When detected in estrus, gilts were artificially inseminated. On d 40 to 43 of gestation, 7 gilts in the control treatment, 8 gilts in the PFA treatment, and 5 gilts in the flax treatment were pregnant and were slaughtered. Compared with the control treatment, the flax treatment tended to increase eicosapentaenoic acid (EPA: C20:5n-3) in fetuses (0.14 vs. 0.25 +/- 0.03 mg/g of dry tissue; P = 0.055), whereas gilts receiving PFA had more (P < 0.05) docosahexaenoic acid (DHA: C22:6n-3) in their fetuses (5.23 vs. 4.04 +/- 0.078 mg/g) compared with gilts fed the control diet. Both the flax and PFA diets increased (P < 0.05) DHA (0.60, 0.82, and 0.85 +/- 0.078 mg/g for the control, flax, and PFA diet, respectively) in the chorioallantois. In the endometrium, EPA and docosapentaenoic acid (C22:5n-3) were increased by the flax diet (P < 0.001; P < 0.05), whereas gilts receiving PFA had increased DHA (P < 0.001). The flax diet selectively increased EPA, and the PFA diet selectively increased DHA in the fetus and endometrium. In Exp. 2, gilts were fed diets containing PFA (1.5%) or a control diet beginning at approximately 170 of age (n = 13/treatment). A blood sample was collected after 30 d of treatment, and gilts were artificially inseminated when they were approximately 205 d old. Conceptus and endometrial samples were collected on d 11 to 19 of pregnancy. Plasma samples indicated that PFA increased (P < 0.005) circulating concentrations of EPA and DHA. Endometrial EPA was increased (P < 0.001) for gilts fed the PFA diet. In extraembryonic tissues, PFA more than doubled (P < 0.001) the EPA (0.13 vs. 0.32 +/- 0.013 mg/g) and DHA (0.39 vs. 0.85 +/- 0.05 mg/g). In embryonic tissue on d 19, DHA was increased (P < 0.05) by PFA (0.20 vs. 0.30 +/- 0.023 mg/g). Supplementing n-3 PUFA, beginning 30 d before breeding, affected endometrial, conceptus, and fetal fatty acid composition in early pregnancy. Dynamic day effects in fatty acid composition indicate this may be a critical period for maternal fatty acid resources to affect conceptus development and survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call