Abstract

Postprandial lipemia influences the development of atherosclerosis, which itself constitutes a risk factor for the development of cardiovascular diseases. The introduction of bioactive compounds may prevent these deleterious effects. Proanthocyanidins are potent antioxidants that have hypolipidemic properties, while omega-3 polyunsaturated fatty acids (ω3 PUFAs) stimulate fatty acid oxidation and gene expression programs, controlling mitochondrial functions. In this study, we investigated the effects of acute treatment of ω3 PUFAs and proanthocyanidins on the metabolic flexibility and lipid handling profiles in the skeletal muscle and adipose tissue of rats that were raised on diets, high in saturated fatty acids. For this, oil rich in docosahexaenoic (DHA-OR), grape seed proanthocyanidins extract (GSPE), or both substances (GSPE + DHA-OR) were administered with an overload of lard oil to healthy Wistar rats. Our results indicate that the addition of DHA-OR to lard oil increases insulin sensitivity and redirects fatty acids toward skeletal muscle, thereby activating fatty acid oxidation. We also observed an improvement in adipose mitochondrial functionality and uncoupling. In contrast, GSPE lowers lipidemia, prevents muscle reactive oxygen species (ROS) production and damage, furthermore, activates mitochondrial biogenesis and lipogenesis in adipose tissue. The addition of GSPE+DHA-OR to lard resulted in nearly all the effects of DHA-OR and GSPE administered individually, but the combined administration resulted in a more attenuated profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call