Abstract

Background: This study investigated the association of omega-3 polyunsaturated fatty acids (n-3 PUFA) within erythrocyte membranes and cardiovascular risk assessed by three different estimates. Methods: Inclusion criteria were individuals of both sexes, 30 to 74 years, with at least one cardiovascular risk factor, and no previous cardiovascular events (n = 356). Exclusion criteria were individuals with acute or chronic severe diseases, infectious diseases, pregnant, and/or lactating women. Plasma biomarkers (lipids, glucose, and C-reactive protein) were analyzed, and nineteen erythrocyte membrane fatty acids (FA) were identified. The cardiovascular risk was estimated by Framingham (FRS), Reynolds (RRS), and ACC/AHA-2013 Risk Scores. Three patterns of FA were identified (Factor 1, poor in n-3 PUFA), (Factor 2, poor in PUFA), and (Factor 3, rich in n-3 PUFA). Results: Total cholesterol was inversely correlated with erythrocyte membranes C18:3 n-3 (r = −0.155; p = 0.004), C22:6 n-3 (r = −0.112; p = 0.041), and total n-3 (r = −0.211; p < 0.001). Total n-3 PUFA was associated with lower cardiovascular risk by FRS (OR = 0.811; 95% CI= 0.675–0.976). Regarding RRS, Factor 3 was associated with 25.3% lower odds to have moderate and high cardiovascular risk (OR = 0.747; 95% CI = 0.589–0.948). The ACC/AHA-2013 risk score was not associated with isolated and pooled FA. Conclusions: n-3 PUFA in erythrocyte membranes are independent predictors of low-risk classification estimated by FRS and RRS, which could be explained by cholesterol-lowering effects of n-3 PUFA.

Highlights

  • Cardiovascular diseases (CVD) remain the major cause of death worldwide

  • It was observed a high frequency of hypertension (57%) and a family history of the disease (65.2%)

  • Most individuals were classified as a high cardiovascular risk by Framingham Risk Score (FRS) (52.2%) and ACC/AHA 2013 score (50.4%), while only 29.1% classified by Reynolds Risk Score (RRS)

Read more

Summary

Introduction

Cardiovascular diseases (CVD) remain the major cause of death worldwide. the assessment and monitoring of cardiovascular (CV) risk through algorithms has shown to be an accurate tool to predict outcomes, as well as to improve treatment indication when compared with the isolated use of risk factors [1,2,3]. The estimates use risk factors that are the major contributors to cardiovascular events (i.e., age, sex, glycemia, blood pressure, and blood lipids) [3,4,5]. Cardiovascular risk assessment models have been built to guide the treatment of modified cardiovascular risk factors and, in the last decade to help therapeutic goals based on statins. This study investigated the association of omega-3 polyunsaturated fatty acids (n-3 PUFA) within erythrocyte membranes and cardiovascular risk assessed by three different estimates. Methods: Inclusion criteria were individuals of both sexes, 30 to 74 years, with at least one cardiovascular risk factor, and no previous cardiovascular events (n = 356). Plasma biomarkers (lipids, glucose, and C-reactive protein) were analyzed, and nineteen erythrocyte membrane fatty acids (FA) were identified. Three patterns of FA were identified (Factor 1, poor in n-3 PUFA), (Factor 2, poor in PUFA), and (Factor 3, rich in n-3 PUFA)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call