Abstract

BackgroundThe activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors.MethodsWe studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells.ResultsMDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells.ConclusionsOur work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.

Highlights

  • The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs)

  • Since hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR) can be negatively regulated at posttranscriptional level, by phosphorylation on serine [38] or ubiquitination followed by proteasome degradation [39], we investigated whether ω3PUFAs may affect these events

  • Since in HT29-dx cells docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) did not modify the expression of Trc8 (Figure 4B), but increased the ubiquitination of HMGCoAR versus the control (Figures 3B and 4A), we investigated whether these polyunsatured fatty acids (PUFAs) directly activate Trc8 enzyme

Read more

Summary

Introduction

The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. In vitro studies suggest that the anti-proliferative effect of ω3PUFAs can be due to increased production of reactive oxygen species [14], increased DNA strand breaks and cell cycle arrest [15], and changes in proteins involved in apoptosis, detoxification and cell cycle control [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call