Abstract
When magmas erupt at the surface, they may have undergone many changes since their inception. While olivine drives some of these changes through crystallization and fractionation, it also records the magma evolution via mineral chemistry and by trapping mineral and melt inclusions. Olivine is an effective recorder of intensive parameters, such as temperature and melt composition, and provides an outstanding petrological tool for constraining dynamic processes, such as ascent, mixing, and cooling. Olivine sheds light on magmatic puzzles that involve both mafic and more evolved magmas, with protracted and complex magmatic histories that often obscure earlier and deeper processes. This contribution summarizes the current state of how olivine helps reconstruct source-to-surface magma assembly through its chemistry, inclusions, and textures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.