Abstract

Abstract— Melting models indicate that the composition and abundance of olivine systematically co‐vary and are therefore excellent petrologic indicators. However, heliocentric distance, and thus surface temperature, has a significant effect on the spectra of olivine‐rich asteroids. We show that composition and temperature complexly interact spectrally, and must be simultaneously taken into account in order to infer olivine composition accurately. We find that most (7/9) of the olivine‐dominated asteroids are magnesian and thus likely sampled mantles differentiated from ordinary chondrite sources (e.g., pallasites). However, two other olivine‐rich asteroids (289 Nenetta and 246 Asporina) are found to be more ferroan. Melting models show that partial melting cannot produce olivine‐rich residues that are more ferroan than the chondrite precursor from which they formed. Thus, even moderately ferroan olivine must have non‐ordinary chondrite origins, and therefore likely originate from oxidized R chondrites or melts thereof, which reflect variations in nebular composition within the asteroid belt. This is consistent with the meteoritic record in which R chondrites and brachinites are rare relative to pallasites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.