Abstract

Olive (oli) is a recessive nuclear mutation of Antirrhinum majus which reduces the level of chlorophyll pigmentation and affects the ultrastructure of chloroplasts. The oli-605 allele carries a Tam3 transposon insertion which has allowed the locus to be isolated. The oli gene encodes a large putative protein of 153 kDa which shows homology to the products of two bacterial genes necessary for tetrapyrrole-metal chelation during the synthesis of bacteriochlorophyll or cobyrinic acid. We therefore propose that the product of the oli gene is necessary for a key step of chlorophyll synthesis: the chelation of magnesium by protoporphyrin IX. Somatic reversion of the oli-605 allele produces chimeric plants which indicate that the oli gene functions cell-autonomously. Expression of oli is restricted to photosynthetic cells and repressed by light, suggesting that it may be involved in regulating the rate of chlorophyll synthesis in green tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.