Abstract

BackgroundColibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island. Human and animal studies have shown that colibactin-producing gut bacteria promote carcinogenesis and enhance the progression of colorectal cancer through cellular senescence and chromosomal abnormalities. In this study, we investigated the impact of prebiotics on the genotoxicity of colibactin-producing E. coli strains Nissle 1917 and NC101.MethodsBacteria were grown in medium supplemented with 20, 30 and 40 mg/mL of prebiotics inulin or galacto-oligosaccharide, and with or without 5 μM, 25 μM and 125 μM of ferrous sulfate. Colibactin expression was assessed by luciferase reporter assay for the clbA gene, essential for colibactin production, in E. coli Nissle 1917 and by RT-PCR in E. coli NC101. The human epithelial colorectal adenocarcinoma cell line, Caco-2, was used to assess colibactin-induced megalocytosis by methylene blue binding assay and genotoxicity by γ-H2AX immunofluorescence analysis.ResultsInulin and galacto-oligosaccharide enhanced the expression of clbA in pks+ E. coli. However, the addition of 125 μM of ferrous sulfate inhibited the expression of clbA triggered by oligosaccharides. In the presence of either oligosaccharide, E. coli NC101 increased dysplasia and DNA double-strand breaks in Caco-2 cells compared to untreated cells.ConclusionOur results suggest that, in vitro, prebiotic oligosaccharides exacerbate DNA damage induced by colibactin-producing bacteria. Further studies are necessary to establish whether oligosaccharide supplementation may lead to increased colorectal tumorigenesis in animal models colonized with pks+ E. coli.

Highlights

  • Colibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island

  • Bacterial strains and growth conditions E. coli strains used in this study: control strain pks- E. coli K-12, which is colibactin-negative (ER2738, New England BioLabs, New York, United States); the murine pks+ E. coli NC101 strain; and the engineered E. coli Nissle 1917 (EcN) strains carrying a chromosomal translational fusion consisting of the promoterless luxABCDE construct and the promoter of one of the four genes clbA, clbB, clbQ or clbR [7]

  • Inulin and GOS enhance clbA expression in EcN To study the impact of oligosaccharides on the growth of EcN and colibactin expression, we cultured the bacteria in the presence of inulin or GOS

Read more

Summary

Introduction

Colibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island. E. coli that harbor the polyketide synthase (pks) island can be part of the microbial pool colonizing the gut of patients with inflammatory bowel disease [4], patients with familial adenomatous polyposis [5] or CRC, as well as healthy individuals [6]. This genomic island encodes the components of a polyketide/non-ribosomal peptide hybrid biosynthesis pathway that is responsible for the expression of the genotoxin colibactin [7]. About 20–22% of healthy individuals are colonized by pks+ E. coli [5, 6], and these individuals may be at higher risk of developing CRC

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call