Abstract

Oligopeptidase B, a member of the novel prolyl oligopeptidase family of serine peptidases, is involved in cell invasion by trypanosomes. The kinetic analysis of the reactions of oligopeptidase B, which preferentially cleaves peptides at two adjacent basic residues, has revealed significant differences from the trypsin-like serine peptidases. (i) The pH dependence of k(cat)/K(m) deviates from normal bell-shaped curves due to ionization of an enzymatic group characterized by a macroscopic pK(a) of approximately 8.3. The effect of this group is abolished at high ionic strength. (ii) The second-order acylation rate constants, k(cat)/K(m), are similar with the ester and the corresponding amide substrates, suggesting that their chemical reactivity does not prevail in the rate-limiting step. The kinetic deuterium isotope effects indicate that the rate-limiting step for k(cat)/K(m) is principally governed by conformational changes. (iii) The pH-k(cat)/K(m) profile and the very low rate constant for benzoyl-citrulline ethyl ester reveal a new kinetically influential group ionizing below the pK(a) of the active site histidine and indicate that the positive charge of arginine is essential for effective catalysis. (iv) The enzyme is inhibited by high concentrations of substrate. The mechanism of inhibition markedly varies with the reaction conditions. (v) The optimum temperature for the reactions of amide substrates is unusually low, slightly below 25 degrees C, whereas with benzoyl-arginine ethyl ester a linear Eyring plot is obtained up to 39 degrees C. The positive entropies of activation point to substantial reorganization of water molecules upon substrate binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.