Abstract

Lateral flow assays (LFAs) as rapid analytical techniques promise to be widely used in point-of-care (POC) diagnostics because of their affordability and simplicity. However, LFAs still suffer from low sensitivity in detection of various biomarkers, e.g., nucleic acids. In this study, we developed a simple and general one-step signal amplification strategy, which employed oligonucleotide-linked gold nanoparticle (AuNP) aggregates to enhance the sensitivity in nucleic acid lateral flow (NALF) assays. Using a nucleic acid sequence of human immunodeficiency virus type 1 (HIV-1) as a model analyte, we observed that the detection limit of the developed NALF assay was 0.1 nM, which was improved by 2.5-fold compared with that of a non-signal amplification approach. The methodology described here could be used to detect a broad range of nucleic acids, and the general signal amplification approach could be potentially adopted in other types of LFAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call