Abstract

This paper describes a novel method to map guanine bases in short oligonucleotides using a simple chemical modification reaction and subsequent analysis by electrospray ionization ion trap mass spectrometry (ITMS). In situ guanine-specific methylation followed by gas-phase fragmentation permits the determination of the positions of all guanine residues. Collision-induced dissociation (CID) of the monomethylated oligonucleotide strand promotes rapid depurination and further collision (MS3) of the apurinic oligonucleotide leads to preferential cleavage of the backbone at the site of depurination. The mass of the resulting complementary product ions verifies the position of each guanine base in the sequence. The utility of this methodology is demonstrated for oligonucleotide sequences up to 10 bases in length. In addition, this technique successfully illustrates the use of selective fragmentation for sequencing oligonucleotides by ITMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call