Abstract

Truncation can enhance the affinity of aptamers for their targets by limiting nonessential segments and therefore limiting the molecular degrees of freedom that must be overcome in the binding process. This study demonstrated a truncation protocol relying on competitive antibody binding and the hybridization of complementary oligonucleotides, using platelet derived growth factor BB (PDGF-BB) as the model target. On the basis of the immunoassay results, an initial long aptamer was truncated to a number of sequences with lengths of 36-40 nucleotides (nt). These sequences showed apparent KD values in the picomolar range, with the best case being a 36-nt truncated aptamer with a 150-fold increase in affinity over the full-length aptamer. The observed binding energies correlated well with relative energies calculated by molecular dynamics simulations. The effect of the truncated aptamer on PDGF-BB-stimulated fibroblasts was found to be equivalent to that of the full-length aptamer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.