Abstract

BackgroundCultivated tomato (Solanum lycopersicum L.) has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP) discovery as a high-throughput approach for marker development in cultivated tomato.ResultsThree varieties, FL7600 (fresh-market), OH9242 (processing), and PI114490 (cherry) were used as a source of genomic DNA for hybridization to oligonucleotide arrays. Identification of SFPs was based on outlier detection using regression analysis of normalized hybridization data within a probe set for each gene. A subset of 189 putative SFPs was sequenced for validation. The rate of validation depended on the desired level of significance (α) used to define the confidence interval (CI), and ranged from 76% for polymorphisms identified at α ≤ 10-6 to 60% for those identified at α ≤ 10-2. Validation percentage reached a plateau between α ≤ 10-4 and α ≤ 10-7, but failure to identify known SFPs (Type II error) increased dramatically at α ≤ 10-6. Trough sequence validation, we identified 279 SNPs and 27 InDels in 111 loci. Sixty loci contained ≥ 2 SNPs per locus. We used a subset of validated SNPs for genetic diversity analysis of 92 tomato varieties and accessions. Pairwise estimation of θ (Fst) suggested significant differentiation between collections of fresh-market, processing, vintage, Latin American (landrace), and S. pimpinellifolium accessions. The fresh-market and processing groups displayed high genetic diversity relative to vintage and landrace groups. Furthermore, the patterns of SNP variation indicated that domestication and early breeding practices have led to progressive genetic bottlenecks while modern breeding practices have reintroduced genetic variation into the crop from wild species. Finally, we examined the ratio of non-synonymous (Ka) to synonymous substitutions (Ks) for 20 loci with multiple SNPs (≥ 4 per locus). Six of 20 loci showed ratios of Ka/Ks ≥ 0.9.ConclusionArray-based SFP discovery was an efficient method to identify a large number of molecular markers for genetics and breeding in elite tomato germplasm. Patterns of sequence variation across five major tomato groups provided insight into to the effect of human selection on genetic variation.

Highlights

  • Cultivated tomato (Solanum lycopersicum L.) has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm

  • We report single feature polymorphism (SFP) discovery using oligonucleotide arrays hybridized with genomic DNAs from three S. lycopersicum varieties representing fresh-market, processing, and cherry (S. lycopersicum var. cerasiformae) for marker development that will benefit both geneticists and breeders

  • We demonstrated that SFP discovery using an oligonucleotide array is an efficient way to develop a large number of markers that may be used for high-resolution genetic mapping and marker-assisted breeding in elite tomato germplasm

Read more

Summary

Introduction

Cultivated tomato (Solanum lycopersicum L.) has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP) discovery as a high-throughput approach for marker development in cultivated tomato. Extensive genetic and genomic resources have been developed. In the early 1990's, a high-resolution genetic map was constructed using more than 1,000 RFLP markers between Solanum lycopersicum and a wild relative, S. pennellii [1]. Tomato, was characterized via map-based cloning in tomato [2]. Large-scale sequencing of tomato ESTs identified 609 potential simple sequence repeats (SSRs) and 152 PCR-based polymorphic markers that were mapped on the S. lycopersicum × S. pennellii reference population [13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call