Abstract

BackgroundOligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accumulation and insulin resistance in human hepatic HepG2 cells.MethodsHepG2 cells were treated with palmitate for 24 h to induce cellular hepatic steatosis and insulin resistance. The cells were then treated with Oligonol at subtoxic concentrations and examined for lipid metabolism, cytokine production, and insulin signaling using quantitative RT-PCR and western blot analysis.ResultsOligonol treatment reversed the palmitate-induced intracellular lipid accumulation, down regulated the expression of lipogenic genes, and up-regulated genes for fatty acid degradation. Oligonol restored insulin sensitivity, as was determined by the phosphorylation states of IRS-1. Oligonol also inhibited STAT3-SOCS3 signaling and increased AMPK phosphorylation in HepG2 cells.ConclusionOligonol treatment improved palmitate-induced cellular steatosis and insulin resistance in HepG2 cells with concomitant reduction of inflammatory cytokines and decrease in STAT3-SOCS3 and AMPK-mTOR pathways. Oligonol may have beneficial effects in lipid metabolism and insulin resistance in the liver.

Highlights

  • Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits

  • This study showed that Oligonol suppressed de novo fatty acid synthesis and inflammatory cytokine production, which are associated with the inhibition of signal transducer and activator of transcription 3 (STAT3)–suppressor of cytokine signaling 3 (SOCS3) and AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)

  • Oligonol improved palmitate-treated cells (PA)-induced insulin resistance Based on our finding that Oligonol suppressed interleukin 6 (IL-6)– STAT3–SOCS3 signaling in PA-treated HepG2 cells, we examined the effect of Oligonol on the key proteins involved in insulin signaling

Read more

Summary

Introduction

Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accumulation and insulin resistance in human hepatic HepG2 cells. The mammalian liver controls the metabolic homeostasis for carbohydrates, lipids, and proteins. Functional failure of the organ is detrimental to an organism. Non-alcoholic fatty liver disease (NAFLD) is a broadly defined term for fatty liver-related diseases [1, 2]. An early form of NAFLD is hepatic steatosis, characterized by the deposition of triglycerides in the liver as lipid droplets. Hepatic steatosis makes patients prone to more serious forms of NAFLD, such as non-alcoholic steatohepatitis (NASH) and liver cancer.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.