Abstract

Inhibitors of mitochondrial oxidative metabolism have been proposed to interfere with Ca2+ influx mediated by store-operated channels (SOC), secondary to their effects on ATP production. We assessed SOC activity by 45Ca2+ influx and fluorimetric measurements of free Ca2+ or Mn2+ quench in thapsigargin-treated Chinese hamster ovary cells and Jurkat T-cells, and additionally by electrophysiological measurements of the Ca2+-release-activated Ca2+ current (Icrac) in Jurkat T-cells. Various mitochondrial antagonists were confirmed to inhibit SOC. However, the following evidence supported the proposal that oligomycin, in particular, exerts an inhibitory effect on SOC in addition to its known actions on mitochondria and Na+-pump activity: (i) the concentrations of oligomycin required to inhibit SOC-mediated Ca2+ influx or Icrac (half-inhibitory concentration approximately 2 microM) were nearly 50-fold higher than the concentrations that blocked mitochondrial ATP production; (ii) the rank order of potency of oligomycins A, B and C for decreasing SOC-mediated Ca2+ influx or Icrac differed from that known for inhibition of mitochondrial function; (iii) oligomycin blocked Icrac under voltage clamp and with intracellular Na+ and K+ concentrations fixed by dialysis from the patch pipette, arguing that the effect was not secondary to membrane polarization or pump activity; and (iv) fixing the cytosolic ATP concentration by dialysis from the patch pipette attenuated rotenone- but not oligomycin-mediated inhibition of Icrac. Oligomycin also blocked volume-activated Cl- currents, a profile common to some other known blockers of SOC that are not known mitochondrial inhibitors. These findings raise the possibility that oligomycin interacts directly with SOC, and thus may extend the known pharmacological profile for this type of Ca2+-influx pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call