Abstract
We report an investigation of the influence of aqueous solutions of amphiphilic oligomers on the ordering of micrometer-thick films of thermotropic liquid crystals (LCs), thus addressing the gap in knowledge arising from previous studies of the interactions of monomeric and polymeric amphiphiles with LCs. Specifically, we synthesized amphiphilic oligomers (with decyl hydrophobic and pentaethylene glycol hydrophilic domains) in monomer, dimer, and trimer forms, and incubated aqueous solutions of the oligomers against nematic films of 4'-pentyl-4-biphenylcarbonitrile (5CB). All amphiphilic oligomers caused sequential surface-driven orientational (planar to homeotropic) and then bulk phase transitions (nematic to isotropic) with dynamics depending strongly on the degree of oligomerization. The dynamics of the orientational transitions accelerated from monomer to trimer, consistent with the effects of an increase in adsorption free energy. The mechanism underlying the orientational transition, however, involved a decrease in anchoring energy and not change in the easy axis of the LC. In contrast, the rate of the phase transition induced by absorption of oligomers into the LC decreased from monomer to trimer, suggesting that constraints on configurational degrees of freedom influence the absorption free energies of the oligomers. Interestingly, the oligomer-induced transition from the nematic to isotropic phase of 5CB was observed to nucleate at the aqueous-5CB interface, consistent with surface-induced disorder underlying the above-reported decrease in anchoring energy caused by the oligomers. Finally, we provided proof-of-concept experiments of the triggering of LCs using a trimeric amphiphile that is photocleaved by UV illumination into monomeric fragments. Overall, our results provide insight into the rational design of oligomers that can be used as triggers to create responsive LCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.