Abstract

During the oligomerization of ethylene over heterogeneous catalysts, the production of α-olefins may be lowered because of an accompanying deactivation of catalyst resulting from strong adsorption of products, by isomerization or by a tendency to copolymerize into branched products. The oligomerization of ethylene was studied using Ni(II)/sulfated alumina catalysts prepared with a nonporous fumed alumina (ALON) support. The influences of methods of catalyst preparation and activation upon oligomerization activity were screened using a gas−solid microreactor. On the basis of the test results obtained in the microreactor, a modified form of the superior catalyst was prepared and its performance was examined in more detail using a well-agitated gas−liquid−solid slurry reactor. This catalyst exhibited very good oligomerization activity with no apparent deactivation in the slurry reactor at temperatures at or below 298 K and at near-atmospheric pressure. Complete conversion of the ethylene with the production of mainly two oligomers, 1-butene and 1-hexene, was attained. After 34 h in the slurry, formation of a significant amount of two branched C6 isomers was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.