Abstract

A C-type lectin was previously isolated from the blood of healthy Atlantic salmon ( Salmo salar) and this salmon serum lectin (SSL) was found to opsonise bacteria. Selective binding to bacteria in vivo requires that the lectin be able to recognise a carbohydrate pattern on the bacterial surface distinguishable from that of the host. In order to investigate this selectivity in the lectin, a phage-display antibody was prepared and then used for detection of lectin by Western blotting. A carbohydrate binding-inhibition assay with Western blot detection of the lectin showed mannose to be the primary ligand and related sugars including glucose, N-acetylglucosamine and methyl α- d-mannopyranoside to be additional ligands of this lectin. The SSL in serum detected by Western blotting was shown to form a complex oligomer. These results show that the salmon serum lectin is oligomeric in blood and that it recognizes a broad spectrum of carbohydrates with optimal binding to mannose. The lectin might therefore be an ideal opsonin for multiple salmon pathogens with carbohydrate arrays on their surfaces. No similar lectins were identified in the sera of other fish by Western blotting using the phage-display antibody. Molecular analysis will be required in order to determine whether homologous lectins are expressed in related fish species. It is anticipated that similar lectins might have related pathogen recognition roles in divergent fish species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call