Abstract

Unlike those for monomeric superfamily members, heterotropic allosteric effectors of the tetrameric Escherichia coli glycerol kinase (EGK) bind to only one of the two domains that define the catalytic cleft and far from the active site. An R369A amino acid substitution removes oligomeric interactions of a novel mini domain-swap loop of one subunit with the catalytic site of another subunit, and an A65T substitution perturbs oligomeric interactions in a second interface. Linked-functions enzyme kinetics, analytical ultracentrifugation, and FRET are used to assess effects of these substitutions on the allosteric control of catalysis. Inhibition by phosphotransferase system protein IIA Glc is reduced by the R369A substitution, and inhibition by fructose 1,6-bisphosphate is abolished by the A65T substitution. The oligomeric interactions enable the heterotropic allosteric effectors to act on both domains and modulate the catalytic cleft closure despite binding to only one domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.