Abstract

Formation of protein amyloid fibrils consists of a series of intermediates including oligomeric aggregates, proto-fibrillar structures, and finally mature fibrils. Recent studies show higher toxicity for oligomeric and proto-fibrillar intermediates of protein relative to their mature fibrils. Here the kinetic of the insulin amyloid fibrillation was evaluated using a variety of techniques including ThT fluorescence, Congo red absorbance, circular dichroism, and atomic force microscopy (AFM). The solution surface tension changes were attributed to hydrophobic changes in insulin structure and were detected by Du Noüy Ring method. Determination of the surface tension of insulin oligomeric, proto-fibrillar and fibrillar forms indicated that the hydrophobicity of solution is enhanced by the formation of the oligomeric forms of insulin compared to other forms. In order to investigate the toxicity of the different forms of insulin we monitored morphological alterations of the differentiated neuron-like PC12 cells following incubation with native, oligomeric aggregates, proto-fibrillar, and fibrillar forms of insulin. The cell body area, average neurite length, neurite width, number of primary neurites, and percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different forms of insulin. We observed that the oligomeric form of insulin impaired the growth and complexity of PC12 cells compared to other forms. Together our data suggest that the lower surface tension of oligomers and their perturbation affects the morphology of PC12 cells, mainly due to their enhanced hydrophobicity and detergent-like structures.

Highlights

  • A variety of human diseases including neurodegenerative diseases, non-neuropathic systemic amyloidoses, and non-neuropathic localized diseases are related to formation of protein amyloid fibrillar aggregation [1,2]

  • Since aggregation of proteins can disrupt biochemical processes and signal transduction in these cells, here we investigated the effect of insulin and its three amyloid intermediates on the differentiation and morphology of PC12 cells

  • The studies presented here indicate that there is a correlation between surface tension and neurotoxicity of various aggregated species in the course of insulin fibrillation

Read more

Summary

Introduction

A variety of human diseases including neurodegenerative diseases, non-neuropathic systemic amyloidoses, and non-neuropathic localized diseases are related to formation of protein amyloid fibrillar aggregation [1,2]. A large number of proteins aggregate to amyloid fibrils or amyloid-like states under non-biological conditions [3]. During amyloid formation of different proteins, an unfolded or partially unfolded state causes the formation of non-fibrillar aggregation prior to amyloid formation [7]. Amyloid fibril formation consists of a series of stages including soluble oligomer aggregation as a result of nonspecific interactions, protofibrillar structure formation and their assembly to mature fibrils [8,9,10,11]. Insulin prefibrillar aggregations (oligomers and protofibrils) have a low content of beta sheets in comparison with mature amyloid fibrils, and act as a nucleation agent to form mature fibrils [12,13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.