Abstract

The deposition of beta-2-microglobulin (beta2m) as amyloid fibers results in debilitating complications for renal failure patients who are treated by hemodialysis. In vitro, wild-type beta2m can be converted to amyloid under physiological conditions by exposure to biomedically relevant concentrations of Cu(2+). In this work, we have made comparative measurements of the structural and oligomeric changes in beta2m at time points preceding fibrillogenesis. Our results show Cu(2+) mediates the formation of a monomeric, activated state followed by the formation of a discrete dimeric intermediate. The dimeric intermediates then assemble into tetra- and hexameric forms which display little additional oligomerization on the time scales of their own formation (<1 h). Amyloid fiber formation progresses from these intermediate states but on much longer time scales (>1 week). Although Cu(2+) is necessary for the generation and stabilization of these intermediates, it is not required for the stability of mature amyloid fibers. This suggests that Cu(2+) acts as an initiating factor of amyloidosis by inducing oligomer formation. (1)H NMR and near-UV circular dichroism are used to establish that oligomeric intermediates are native-like in structure. The native-like structure and discrete oligomeric size of beta2m amyloid intermediates suggest that this protein forms fibrils by structural domain swapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.