Abstract

Oligogalacturonides (OGAs) are a biologically active carbohydrate derived from homogalacturonan, a major element of cell wall pectin. OGAs induced resistance and mechanism were assessed in Arabidopsis thaliana-Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) interaction. The effective resistance was mainly observed at 25 mg/L OGAs with reduced disease index, bacterial multiplication, higher transcript level of salicylic acid (SA) pathway related genes (PR1, PR2, PR5) and jasmonic acid (JA) pathway related genes (PDF1.2, VSP2) as well as SA, JA content and production of reactive oxygen species (ROS), nitric oxide (NO). In SA (NahG, sid2) and JA (jar1) deficient mutants, disease severity indicated that both SA and JA pathways are necessary for Arabidopsis response to Pst DC3000. OGAs triggered less resistance to Pst DC3000 in JA-deficient mutant, and SA-deficient mutants signifying that SA and JA play redundant roles in OGAs induced resistance. Therefore, these evidences further reveal the signaling pathways of OGAs resistance, which is conducive to its application in agriculture to protect plants from diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.