Abstract
Poplar was one of the first woody species whose individual chromosomes could be identified using chromosome specific painting probes. Nevertheless, high-resolution karyotype construction remains a challenge. Here, we developed a karyotype based on the meiotic pachytene chromosome of Populus simonii which is a Chinese native species with many excellent traits. This karyotype was anchored by oligonucleotide (oligo)-based chromosome specific painting probes, a centromere-specific repeat (Ps34), ribosomal DNA, and telomeric DNA. We updated the known karyotype formula for P. simonii to 2n = 2x = 38 = 26m + 8st + 4t and the karyotype was 2C. The fluorescence in situ hybridization (FISH) results revealed some errors in the current P. simonii genome assembly. The 45S rDNA loci were located at the end of the short arm of chromosomes 8 and 14 by FISH. However, they were assembled on pseudochromosomes 8 and 15. In addition, the Ps34 loci were distributed in every centromere of the P. simonii chromosome in the FISH results, but they were only found to be present in pseudochromosomes 1, 3, 6, 10, 16, 17, 18, and 19. Our results reveal that pachytene chromosomes oligo-FISH is a powerful tool for constructing high-resolution karyotypes and improving the quality of genome assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.