Abstract
Injury to the nervous system results in reactive astrogliosis that is a critical determinant of neuronal regeneration. To analyze glial responses to mechanical injury and the role of the polysialic neural cell adhesion molecule (PSA-NCAM) in this process, we established primary glia cultures from newborn rat cerebral cortex. Scratching a confluent monolayer of primary glial cells resulted in two major events: rapid migration of oligodendrocyte progenitor-like (O-2A) cells into the wounded area and development of polarized morphology of type 1 astrocytes at the wound edge. Migrating O-2A progenitors had a bipolar morphology and exhibited A2B5 and O4 immunolabeling. Once these cells were established inside the wounded area, they lost A2B5 immunoreactivity and differentiated into glial fibrillary acidic protein-positive astrocytes. Migrating O-2A cells expressed PSA-NCAM, but type 1 astrocytes at the wound edge did not. Treatment of wounded cultures with Endo-N, which specifically removes PSA from the surface of cells, resulted in a significant decrease in O-2A cell migration into the wounded area and completely blocked the wound closure. Video time-lapse analysis showed that, in the presence of Endo-N, O-2A cells remained motile and migrated short distances but did not move away from the monolayer. These results demonstrate that O-2A progenitors contribute to reactive astrogliosis in culture and that PSA-NCAM is involved in this process by regulating cell migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.